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ABSTRACT: Predictions of drought onset and termination at subseasonal (from 2 weeks to 1 month) lead times could
provide a foundation for more effective and proactive drought management. We used reforecasts archived in NOAA’s
Subseasonal Experiment (SubX) to force the Noah Multiparameterization (Noah-MP), which produced forecasts of soil
moisture from which we identified drought levels D0–D4. We evaluated forecast skill of major and more modest droughts,
with leads from 1 to 4 weeks, and with particular attention to drought termination and onset. We find usable drought termi-
nation and onset forecast skill at leads 1 and 2 weeks for major D0–D2 droughts and limited skill at week 3 for major
D0–D1 droughts, with essentially no skill at week 4 regardless of drought severity. Furthermore, for both major and more
modest droughts, we find limited skill or no skill for D3–D4 droughts. We find that skill is generally higher for drought
termination than for onset for all drought events. We also find that drought prediction skill generally decreases from north
to south for all drought events.
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1. Introduction

Drought is among the most damaging, and least under-
stood, of all weather and climate hazards (Pulwarty and
Sivakumar 2014). Droughts are usually incremental and can
span from a few weeks to decades temporally and from a few
hundred to hundreds of thousands of kilometers squared spa-
tially (Pendergrass et al. 2020). Droughts’ creeping develop-
ment is often neglected in the early stages, and the changes
accumulate and trigger more severe direct or indirect impacts.
Eventually, the unattended creeping development leads to ur-
gent crises that are more costly to deal with (Glantz 2004). The
impacts can persist even after the drought itself ends. Therefore,
drought is often a “hidden” natural disaster and its risk is
underestimated (UNDRR 2019; Pendergrass et al. 2020).

During the past decade, nearly all of the contiguous United
States (CONUS) from Colorado to the Pacific coast has suf-
fered from moderate to exceptional droughts (Cook et al.
2018). This includes the continuation of multiyear events
(2009–11 and 2013–16) in California (Griffin and Anchukaitis
2014; Seager et al. 2015; Williams et al. 2015) and the U.S.
Southwest (Delworth et al. 2015; Seager and Hoerling 2014)
and the emergence of significant drought conditions across
the Pacific Northwest (Oregon and Washington) in 2015
(Mote et al. 2016). Drought episodes were especially severe in

the coastal western United States (including California, Oregon,
and Washington). The prolonged severe droughts have stressed
water resources management at the regional level (Mann and
Gleick 2015; Engström et al. 2020).

As the climate warms, an argument has evolved as to whether
drought duration and intensity are increasing (Christensen et al.
2007; Seneviratne et al. 2012; Pendergrass et al. 2020). If so,
more foresighted responses that adopt proactive risk mitiga-
tion strategies may be necessary (Pulwarty and Verdin 2013;
Wilhite et al. 2014). Drought forecast systems in this context
would be especially useful (Arsenault et al. 2020; Carrão et al.
2018; Hao et al. 2018). Predictions of drought onset and termi-
nation (although evasive to date) in addition to other drought
characteristics could provide a foundation for effective proac-
tive drought management.

Seasonal climate forecast systems including the North
American Multi-Model Ensemble (NMME) project (Kirtman
et al. 2014; Wanders et al. 2017) consistently predicted a false
wet 2015/16 winter and forecast a false signal for California
drought termination. In contrast, the forecasts and reforecasts
from the ECMWF and NCEP CFSv2 models, at the subseasonal-
to-seasonal (S2S) (from weeks to 1–2 months) time scale, were
able to predict the correct sign of precipitation anomalies
(Wang et al. 2017). Wang et al. (2017) shows that what is un-
predictable at the seasonal time scale can become predictable
at the subseasonal time scale. Recently there has been surging
interest in “flash droughts,” which are characterized by their
sudden onset and rapid intensification and severe impacts
(Otkin et al. 2018). While many drought prediction products
are updated at monthly time scales, these predictions are of
limited value for flash droughts, which develop on shorter
time scales (Pendergrass et al. 2020), and they are not useful in
determining, for instance, whether individual storms (which
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can be forecast with potentially usable accuracy at lead times
from 1 week to several weeks) will terminate a drought. This
further motivates the need for incorporation of S2S forecasts
into drought monitoring and prediction systems. Our study aims
to fill a gap in the literature on drought forecast skill to incorpo-
rate subseasonal forecasts. Like seasonal drought prediction sys-
tems, such as the NOAA Climate Prediction Center’s (CPC)
seasonal drought outlook, subseasonal drought forecasts derive
their skill from knowledge of weather/climate information and
initial hydrologic conditions (IHCs) at the onset of the forecast
period (Shukla et al. 2012). While subseasonal precipitation fore-
cast skill is generally lower than the skill of forecasts for temper-
ature for the same location and lead time (Monhart et al. 2018;
Pegion et al. 2019; Cao et al. 2021), these studies show that there
nonetheless is potentially usable precipitation forecast skill to
leads of 2–3 weeks. Furthermore, land surface models (LSMs)
provide estimates of IHCs that are critical for drought forecasts,
particularly when (as in the case of agricultural drought) soil
moisture is the metric used to identify droughts (Shukla and Let-
tenmaier 2011; Shukla et al. 2012). In this respect, the work we
report here extends this earlier work to utilize S2S forecasts,
which better exploit precipitation (and hence soil moisture) fore-
cast skill at lead times from 1 week to several weeks.

The subseasonal forecasting time scale (the terms subseaso-
nal and subseasonal-to-seasonal are used interchangeably
here) is typically defined by lead times ranging from 2 weeks
to 1 (or 2) months. This is a critical lead-time window for pro-
active disaster mitigation efforts such as water resource man-
agement for drought mitigation (Mariotti et al. 2018; Vitart
and Robertson 2018). However, research on hydrological ap-
plication of forecasts has not paid much attention to subseaso-
nal lead times until very recently due to a lack of subseasonal
meteorological forecast databases (Vitart et al. 2017). Multi-
model ensemble approaches have proved to be a successful
tool for improving forecast quality for weather and seasonal
predictions (Krishnamurti et al. 1999, 2000). They have the
advantage of exploiting complementary skill from different
models and allow for better estimation of forecast uncertainty
(Hao et al. 2018).

As a result of joint efforts between the weather and climate
communities, several subseasonal forecast databases have
been developed to bridge the weather–climate prediction gap
in the S2S range (Mariotti et al. 2018; Merryfield et al. 2020).
These include the World Weather Research Programme
(WWRP)/World Climate Research Program (WCRP) S2S
Prediction Project (Vitart et al. 2017) and the NOAA/Climate
Testbed Subseasonal Experiment (SubX) project (Pegion
et al. 2019). Recent studies have found that the prediction
skill for precipitation and the application to streamflow fore-
casts of the WWRP/WCRP S2S database varied among pre-
dictor combinations, catchments, and dates of prediction, and
the skill is frequently less than climatology beyond 2-week
lead time (Lin et al. 2018; Pan et al. 2019; Schick et al. 2019).

NOAA’s SubX project is different from the WWRP/
WCRP reforecasts by including both operational and research
models. Furthermore, it is available in near–real time (Pegion
et al. 2019). To our knowledge, little research has been done
to evaluate the hydrological application of subseasonal

forecasts based on the newly developed SubX dataset. A thor-
ough investigation of the hydrological usefulness of subseaso-
nal drought forecasts based on the SubX dataset could form
the foundation of a proactive drought management system.

SubX provides forecasts of climate variables like precipita-
tion and temperature, but not all of them provide hydrologic
variables like soil moisture and runoff. However, hydrologic
forecasts based on SubX can be produced by using the SubX
precipitation (and other surface variables) forecasts to drive a
land surface model (see, e.g., Cao et al. 2021). Here, we drive
hydrological forecasts from SubX with the Noah Multipara-
meterization (Noah-MP, version 4.0.1) (Niu et al. 2011). We
adopted the WRF-HYDRO recommended physical options,
and details are in Text S1 in the online supplemental material.
Noah-MP is a state-of-the-art LSM originally intended to be
the land surface scheme in numerical weather prediction
(NWP) models. It is currently used for physically based, spa-
tially distributed hydrologic simulations within the construct
of NOAA’s National Water Model (NWM). Noah-MP ex-
tends the capabilities of the Noah LSM (Chen et al. 1996;
Chen and Dudhia 2001) and incorporates multiple options for
key land–atmosphere interaction processes, such as surface
water infiltration, runoff, groundwater transfer, and channel
routing (Niu et al. 2007, 2011). Noah-MP has been widely
used for predicting seasonal climate, weather, droughts, and
floods within and beyond CONUS (Zheng et al. 2019).

Given this background, our objectives here are to examine
1) subseasonal forecast skill (at 1–4-week lead times) of
drought onset and termination driven by downscaled SubX
reforecasts in the coastal western United States and 2) how
forecast skill for drought onset and termination vary geo-
graphically and with lead times. To achieve these objectives,
we first downscaled the SubX reforecasts to a finer spatial res-
olution (1/168) from their coarse native resolution (18), in con-
sideration of the high spatial resolution of our hydrological
model. We then implemented the Noah-MP hydrology model
over the coastal western United States using downscaled and
bias-corrected SubX reforecasts as forcings. Based on the
model outputs, we evaluated the SubX-based drought fore-
casts skill (all of the “forecasts” in this paper technically are
reforecasts).

2. Study domain and dataset

a. Study domain

Our study domain is the coastal western United States, con-
sisting of all of California (CA), as well as coastal Oregon
(OR) andWashington (WA) (Fig. 1).

b. SubX database

We used six models from the SubX database with 30 en-
semble members in total (Table 1) over the reforecast period
January 1999–December 2016. The initialization interval of
each model is at least once per week, and the lead time is at
least 32 days. The temporal resolution of the SubX output is
daily, and the raw spatial resolution is 183 18. We downscaled

J OURNAL OF HYDROMETEOROLOGY VOLUME 24710

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/27/24 06:07 PM UTC



and bias corrected the SubX output to 1/168 3 1/168 as de-
scribed in section 3a.

3. Methods

a. Downscaling and bias correction

We downscaled the raw SubX output (forcings to Noah-MP)
using a statistical downscaling method, bias correction and
spatial downscaling (BCSD; Wood et al. 2004). We applied
daily BCSD since it has been shown to be an effective ap-
proach for removing bias (e.g., Monhart et al. 2018; Baker
et al. 2019; Cao et al. 2021) in atmospheric model output.
By using this method, we constrained the precipitation tem-
poral variability (wet/dry days) to be the same as in the raw
data, which we view as desirable (in contrast to methods
like localized constructed analogs (LOCA; Pierce et al.
2014) that attempt to reproduce realistic wet/dry sequences).
We applied daily BCSD to precipitation, maximum daily tem-
perature (Tmax), minimum daily temperature (Tmin), and wind
speed following the steps in Cao et al. (2021), which can be

summarized as follows: 1) we applied spatial (bilinear) inter-
polation of the 18 3 18 daily SubX forecasts to 1/168 3 1/168,
and 2) we bias corrected the outputs from step 1 by each
grid point using the daily empirical quantile mapping (QM)
method (Wood et al. 2002; Cao et al. 2021). The training
dataset we used here is the gridded observation dataset of
Livneh et al. (2013) [extended to 2018 as described in Su
et al. (2021)].

b. Evaluation of SubX precipitation and temperature

We evaluated SubX forecast skill for precipitation and tem-
perature at different lead times before and after bias correc-
tion with BCSD. The skill of forecasts at S2S time scales is
typically evaluated in terms of anomalies or differences from
the climatology. Following Pegion et al. (2019) and Cao et al.
(2021), we used the anomaly correlation coefficient (ACC;
Wilks 2006). ACC provides information about how well the
variability of the forecast anomalies matches the observed
variability. It is calculated as the temporal correlation of
anomalies at each grid cell [details of the ACC calculation
procedures are as in Cao et al. (2021)]. To evaluate the per-
formance of downscaling methods, we also compared the rela-
tive biases for both precipitation and temperature before and
after the implementation of BCSD.

c. Hydrological model implementation

We implemented Noah-MP over the coastal western
United States, which consists of all of CA, as well as coastal
OR and WA. Noah-MP requires meteorological forcings in-
cluding specific humidity, surface pressure, downward solar
and longwave radiation in addition to precipitation, wind
speed, air temperature. We calculated the first four variables
based on the Mountain Microclimate Simulation Model
(MTCLIM) algorithms [implemented as in Bohn et al. (2013),
Cao et al. (2021), and Su et al. (2021)] and disaggregated the
daily output to 3 hourly (Liang et al. 1994; Bennett et al.
2020).

The prediction skill of subseasonal hydrological forecasts
depends on both the IHCs at the time of forecast and the ac-
curacy of forecasts of hydrologic model forcings during the
forecast period (Arnal et al. 2017; Li et al. 2009). Before we
implemented Noah-MP using SubX forcings, we first ran the
model using the Livneh et al. (2013) forcings for the period
1951–2016 and repeated twice. We cropped out the 1961–2016

TABLE 1. List of SubX models used in the research. The community column indicates target users for each model (SEAS for
seasonal prediction community, and NWP for numerical weather prediction community).

Model Members
Initialization

day
Forecast length

(days) Community Reference(s)

NCEP-CFSv2 4 Wednesday 45 SEAS Saha et al. (2014)
GMAO-GEOS_V2p1 4 Varies 45 SEAS Koster et al. (2000), Molod et al. (2012), Reichle

and Liu (2014), and Rienecker et al. (2008)
RSMAS-CCSM4 3 Sunday 45 SEAS Infanti and Kirtman (2016)
EMC-GEFS 11 Wednesday 35 NWP Zhou et al. (2016, 2017) and Zhu et al. (2018)
ECCC-GEPS6 4 Thursday 32 NWP Lin et al. (2016)
ESRL-FIMr1p1 4 Wednesday 32 NWP Sun et al. (2018a,b)

FIG. 1. Study domain, the coastal western United States.
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period from the second repetition to serve as a baseline run
and also to provide assumed perfect IHCs at forecast initia-
tion time for forecasts made over the period 1999–2016. The
initialization interval for most SubX models is 7 days, but dif-
ferent models have different initiation days. We output base-
line run model states for all the SubX initiation dates, and
these states served as the IHCs. For each SubX ensemble
member and each identified initialization, we ran Noah-MP
for 28 days (4-week forecast).

To assess the hydrological model dependency and the ef-
fects of calibration, we also implemented the Variable Infiltra-
tion Capacity (VIC) model, version 4.1.2.d (Liang et al. 1994),
before and after calibration (details are in Text S2 in the on-
line supplemental material). Overall, those results show that,
while there are some differences between models (Noah-MP
and VIC) and VIC before and after calibration, our results
are not strongly dependent on model and calibration. This is
consistent with Mo et al. (2012) who found that differences in
soil moisture percentiles during drought periods are modest
among different LSMs.

d. Assessment of drought forecast skill

1) IDENTIFICATION OF DROUGHT EVENTS

Soil moisture is an important drought indicator, especially
for agricultural droughts. We archived the total column
soil moisture and calculated the soil moisture percentile
(relative to that grid cell’s and that week’s total column
soil moisture history of all the ensembles of the model)
to identify drought events equivalent to D0–D4 droughts
as used by the U.S. Drought Monitor (USDM; https://
droughtmonitor.unl.edu/About/WhatistheUSDM.aspx) (see
also Table 2).

2) EVALUATION SKILL

We evaluated the probabilistic drought forecast skill of
all six SubX models using 30 ensemble members. The evalua-
tion metrics we used include debiased Brier skill score (BSS;
Weigel et al. 2007), bias score (BS), probability of detection
(POD), false alarm ratio (FAR), equitable threat score
(ETS), and Heidke skill score (HSS). We discuss these skill
measures and our applications briefly below.

(i) BSS

The Brier skill score (Wilks 2006) is widely used to mea-
sure the mean square error of probability forecasts for bi-
nary events. It is, however, sensitive to small ensemble
sizes. To overcome this issue, we used the debiased BSS,
which incorporates a correction term in the denominator of
the Brier score (DeFlorio et al. 2019). BSS is calculated as
follows:

BSS 5 1 2
BS

BSref 1 D
, (1)

BS 5
1
N
∑
N

i51
(Pi 2 Oi)2, (2)

BSref 5
1
N
∑
N

i51
(Pclim 2 Oi)2, and (3)

D 5
1
M

Pclim(1 2 Pclim), (4)

where Pi is the forecast skill for drought onset/termination
and is determined by the fraction of the ensemble members that
predicted drought onset/termination for a single reforecast; Oi

shows whether the observed drought onset/termination occurs
(1 if yes; 0 if no); N is the number of reforecast droughts
for the grid cell/region (varies for each grid cell/region); M
is the ensemble size (30 here); and Pclim is the probability of
the reference climatology. BSS ranges from 2‘ to 1. Positive
values indicate that the reforecast skill is higher than the cli-
matological forecast skill.

(ii) Contingency table

We evaluated the forecast of drought onset/termination,
where a dichotomous forecast indicates whether an event will
happen or not. To verify this type of forecast we start with
a contingency table that shows the frequency of “yes” and
“no” forecasts and occurrences (Table 3). The four combi-
nations of forecasts (yes or no) and observations (yes or
no) are

1) hit: event was forecast to occur, and it did occur;
2) miss: event was forecast not to occur, but it did occur;
3) false alarm: event was forecast to occur, but it did not oc-

cur; and
4) correct negative: event forecast was not to occur, and it

did not occur.

We calculated a variety of categorical statistics from the ele-
ments in the contingency table to describe particular aspects
of forecast performance, as follow.

TABLE 2. descriptions, and percentiles for drought categories D0–D4.

D0 D1 D2 D3 D4

Description Abnormally dry Moderate drought Severe drought Extreme drought Exceptional drought
Percentiles ,30 ,20 ,10 ,5 ,3

TABLE 3. Contingency table.

Observed

Forecast Yes No Total

Yes Hits False alarms Forecast yes
No Misses Correct negatives Forecast no
Total Observed yes Observed no
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(iii) Bias score (bias)

Bias score,

bias 5
hits 1 false alarms

hits 1 misses
, (5)

indicates how the forecast frequency of “yes” events com-
pared to the observed frequency of “yes” events. It ranges
from 0 to ‘, with 1 being a perfect score. It indicates whether
the forecast system tends to underforecast (bias , 1) or over-
forecast (bias . 1) events. It only measures relative frequencies

and does not measure how well the forecast corresponds to the
observations.

(iv) Probability of detection (also known as hit rate)

Probability of detection,

POD 5
hits

hits 1 misses
, (6)

tells us what fraction of the observed “yes” events were cor-
rectly forecast. It ranges from 0 to 1, with 1 being a perfect

FIG. 2. (a) Precipitation and (b) Tmax prediction skill (as measured by the ACC) of SubX models averaged over the coastal western
United States for leads 1–4 weeks (without bias correction).

FIG. 3. (top) Precipitation, (middle) Tmin, and (bottom) Tmax bias of SubX models averaged over representative basins and over
October–March (a) before and (b) after bias correction.
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score. POD is sensitive to the climatological frequency of the
event and is most informative for rare events.

(v) False alarm ratio

FAR,

FAR 5
false alarms

hits 1 false alarms
, (7)

gives the fraction of predicted “yes” events that actually did
not occur (i.e., were false alarms). It ranges from 0 to 1, with 0
being a perfect score. FAR is sensitive to false alarms but
ignores misses and should be used in conjunction with POD
(above).

(vi) Equitable threat score (also known as Gilbert skill score)

ETS,

ETS 5
hits 2 hitsrandom

hits 1 misses 1 false alarms 2 hitsrandom
, (8)

where

hitsrandom 5
(hits 1 misses)(hits 1 false alarms)

total
: (9)

measures the fraction of observed events that were correctly
predicted, adjusted for hits associated with random chance
(e.g., it is easier to correctly forecast precipitation occurrence
in a wet climate than in a dry climate). It ranges from 21=3 to
1; 0 indicates no skill, and 1 is a perfect score. ETS is often
used in the verification of precipitation in NWP models be-
cause its “equitability” allows scores to be compared more
fairly across different regimes.

(vii) Heidke skill score (also known as Cohen’s k)

HSS,

HSS 5
(hits 1 correct negative) 2 (expected correct)random

N 2 (expected correct)random
,

(10)

where

(expected correct)random 5
1
N
(A 1 B),

A 5 (hits 1 misses)(hits 1 false alarms),

B 5 (correct negatives 1 misses)(correct negatives
1 false alarms); and

N 5 hits 1 misses 1 false alarms 1 correct negatives,

measures the fraction of correct forecasts after eliminating
those forecasts that could be correct purely because of ran-
dom chance. It ranges from 21 to 1; 0 indicates no skill, and
1 is a perfect score. HSS is used in NOAA’s Climate Prediction
Center (https://www.cpc.ncep.noaa.gov/products/predictions/
90day/skill_exp.html).

4. Results

a. Evaluation of SubX reforecasts

1) PRECIPITATION AND TEMPERATURE SKILL

We examined the precipitation and temperature skill of the
individual SubX models (raw data, 18 resolution), as well as
the multimodel ensemble mean (denoted as “Multimodel”),
at lead times of 1–4 weeks averaged over the coastal western
United States for each month during the October–March pe-
riod separately (see Fig. 2). We chose to focus our evaluation
on the cool season months October–March as precipitation is
generally much lower over most of our domain in the warm
season. Figure 2a shows that precipitation skill (as measured
by ACC) drops rapidly by approximately 40% after week 1.
Almost all models have positive ACC in all months, but by
week 3, some models show almost zero ACC in certain
months. Among individual models, NCEP-CFSv2 performs
best in weeks 1–2, with skill similar to Multimodel. However,
the model performance at longer lead times varies by months.

Figure 2b shows the forecast skill for temperature (the
pattern for Tmin is similar, so we only show Tmax here).
The temperature of SubX models individually as well as
their multimodel mean shows statistically significant (differ-
ent from zero) skill for all lead times in most conditions.
Similar to precipitation, Tmax skill drops quickly after
week 1. Tmax shows higher skill than precipitation for all
leads and shows fewer negative ACC values in weeks 3–4.
Overall, multimodel shows consistently statistically signifi-
cant ACC across all lead times for both precipitation and
temperature. The precipitation and temperature skill we
found is consistent with previous studies of SubX (Cao et al
2021; DeAngelis et al. 2020).

2) PERFORMANCE OF DAILY BCSD

The difference in precipitation and temperature skill (as
measured by ACC) before and after applying daily BCSD is

FIG. 6. California drought (D0–D4) area time series for different
drought levels from (a) baseline [driven by Livneh et al. (2013)
forcing] and (b) USDM.
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small. This meets our expectation since the QM is performed
in a lead-time-dependent manner. Figures 3–5 show the aver-
age relative bias [(model 2 observation)/observation; %] for
precipitation forecasts and bias (model 2 observation) for
temperature forecasts before and after applying daily BCSD,
averaged over October–March. Before applying daily BCSD,
the absolute relative biases of precipitation were up to 80%
across models and over weeks 1–4. They were reduced to be-
low 6% after applying BCSD. The biases in temperature were
also reduced from up to 3.58C to below 0.58C after applying
BCSD (Fig. 3). The bias maps before and after BCSD also

show that the biases were essentially removed after applying
BCSD (Figs. 4 and 5).

b. Hydrologic model evaluation

We examined model performance of the baseline run,
forced by the Livneh et al. (2013) data with hourly disaggrega-
tion. We evaluated California drought area history for various
drought levels (D0–D4 drought based on USDM) in compari-
son with the USDM. The drought area time series in baseline
run and USDM are highly consistent with correlation coeffi-
cients ranging from about 0.8 for D0 to 0.6 for D4 (Fig. 6).

FIG. 7. Baseline drought area time series for different drought levels for five subregions (coastal
Washington, coastal Oregon, northern California, central California, and southern California from
north to south).
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FIG. 8. SubX-based debiased BSS for lead weeks 1–4 for drought termination. The columns show results for drought levels D0–D4;
the rows show leads from week 1 to 4. Blank areas denote no drought at this level in this location.
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FIG. 9. As in Fig. 8, but for drought onset.
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We further compared the drought area time series for differ-
ent drought levels in five subregions (coastal Washington,
coastal Oregon, northern California, central California, and
southern California from north to south; see Fig. 7). We found
that drought duration becomes longer and that drought spa-
tial coverage becomes larger from north to south. There are
more small drought events in the north, and the droughts in
the south are more prolonged.

It is important to note that our results are from the Noah-
MP model with the Livneh forcing as the truth. Use of ob-
served soil moisture was not feasible because soil moisture
observations are sparsely distributed and in most cases are
only available for a decade or so at most. We nonetheless ar-
gue that use of model output soil moisture is plausible based
on our past work and work of others. For instance, Su et al.
(2021) compared the Livneh et al. (2013) forced Noah-MP
simulated soil moisture with observed soil moisture from
USDA/NRCS SCAN (Soil Climate Analysis Network) across
CONUS. Their results showed in general that the spatial pat-
terns of abnormally low soil moisture in the Noah-MP model
constructions are similar to those in the observations. Further-
more, as shown in Text S2 in the online supplemental
material and noted in section 3c, our comparison here of
Noah-MP soil moisture with VIC soil moisture yielded similar
results. We might, alternatively, have used soil from one of
several coupled land–atmosphere reanalyses, e.g., ERA-5
(ECMWF 2017). ERA-5 soil moisture was found to have the

highest skill among reanalysis products when compared with
in situ observations of soil moisture by Alessi et al. (2022) and
Li et al. (2020). However, it was less accurate than soil mois-
ture produced by the LSM-based North American Land Data
Assimilation System (NLDAS) and, in particular, the Noah
LSM (Xia et al. 2012; Alessi et al. 2022). We opted therefore
not to use reanalysis soil moisture (e.g., ERA5) in consider-
ation of the above studies and also because of issues of root-
zone soil moisture discontinuities at the transition points of
some of the ERA5 production streams (Hersbach et al. 2020).

c. Assessment of drought forecast skill

Figure 8 shows the SubX-based BSS values for major
drought termination at lead weeks 1–4. Here we define major
droughts at the gridcell level as 1) the drought period is
greater than 50 days and 2) the drought event is separated by
at least 30 days from any other drought. The drought termina-
tion and onset forecast is defined as a hit when the date that
was forecast and the observed date fall within a 1-week win-
dow. We found that drought termination skill is highest for
D0 drought and lead week 1. Here we show median results of
the 30 ensembles. At lead week 1, we see widespread high
skill (BSS score higher than 0.4–0.5) for droughts D0–D2 (ex-
cept for southern CA for D2; Fig. 8). The skill drops to nega-
tive for D3 in large parts of southern and central CA and part
of OR. The decreasing skill spreads farther in CA and OR for
D4. At lead week 2, the skills for D0–D2 are still relatively

FIG. 10. Drought persistence, continuance, termination, and onset forecast skill for D1 drought
at 2-week lead time by subregions and by SubX models.
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high (BSS score around 0.2–0.3 for the most part, except for
southern CA for D2). We see more widespread negative skill
in D2–D4 when compared with that at week 1. At lead week
3, there is some limited skill for D0–D2. At week 4, most of
our study domain shows no skill for D0–D4 (except a small
part of inland southern CA and WA). Overall, the skill de-
creases as the drought severity increases and also as the lead
time increases. From a spatial perspective, skill decreases
from north to south. Figure 9 shows the SubX-based BSS val-
ues for drought onset at lead weeks 1–4. We see usable onset
skill in lead weeks 1 and 2 for droughts D0–D2 over most of
WA, OR northern, and central CA. Overall, onset skill is a lit-
tle lower than termination skill. The onset skill also decreases
with drought severity and lead time and decreases from north
to south. To reduce noise spatially, we averaged the soil mois-
ture for the subregions shown in Fig. S5 in the online
supplemental material and assessed the drought forecast skills
at different subregions (see Text S3 in the online
supplemental material for details). The skills at the subregion
level are generally consistent with what we found from grid-
cell-based skills.

The drought forecast skill is highly related to precipitation
forecast skill. Li et al. (2021) found a similar degradation pat-
tern of SubX precipitation forecast skill from north to south
over the coastal western United States for most of the models
and at all lead times (weeks). This might explain the north to
south decreasing drought forecast skill we found here.

Atmospheric rivers (ARs) play a critical role as a common
cause of the end of droughts on the West Coast (Dettinger
2013). The high skill of drought termination at lead weeks 3–4
in southern CA and WA might be related to the high AR fore-
cast skill in these regions. DeFlorio et al. (2019) found isolated
positive skill over these locations at weeks 3–4 lead for strong
AR activities in some of the SubX models.

Figure 10 shows forecast POD for major D1 drought con-
tinuance, termination, and onset for the five subregions and
for different models at 2-week lead time. We summarized the
POD (hit rates) based on the percent detection at the grid cell
level. A forecast of drought continuance is counted as hit
when the drought remains through the predicted period. The
forecast of continuance is evaluated relative to persistence,
defined as drought conditions assumed to persist through the
period (if there is no drought in the beginning, then it is as-
sumed no drought in the end; if there is drought in the begin-
ning, then it is assumed drought in the end). The figure shows
that skill for forecasts of continuance is consistently high in all
regions and across all models. Skill for forecasts of termina-
tion is higher in the north than in the south. Except for fore-
casts of termination in WA, which have skill comparable to
persistence, all other regions’ onset and termination forecast
skill are lower than persistence. We see very low forecast ter-
mination skill and very high continuance skill in southern CA.
The reason might be that 1) the precipitation forecast skill in
southern CA is comparatively lower (Fig. 4), which leads to

FIG. 11. ETS, HSS, POD, FAR, and bias score for drought termination in (a) best condition and (b) median condition across all ensembles
at 2-week lead time.
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lower soil hydrological forecast skill, and 2) drought events in
southern CA are very prolonged and the drought event pool
is small particularly during the SubX time period. Fewer
events give a false prediction more weight in the calculation
of POD, and this may reduce apparent drought termination
skill.

The previous analyses all examined major droughts. We
also want to know if the patterns for major droughts are simi-
lar to those for more modest drought events. Thus, we also
examined all drought events without restrictions on drought
length. We calculated the ETS, HSS, POD, FAR, and bias
score for drought termination, at gridcell scale at 2-week lead
time (Fig. 11). Using all 30 ensembles, we evaluated the best
condition and the median condition among all ensemble
members. For ETS, HSS, and POD, positive values indicate
skill. ETS for drought termination is ;0.3 in coastal WA and
OR and southern and central CA in the best condition and
;0.2 in the median condition. HSS and POD are as high as
high ;0.4–0.6 in the above locations in the best condition and
;0.2–0.3 in the median condition. These metrics all show the
lowest skill in southern CA. FAR results show higher false
alarms in the south (especially southern CA) and lower in the
north. The bias score is almost 1 in most of our study area in
the best condition, indicating almost no bias in this case. We
see scattered high bias (overforecast, mostly in inland south-
ern CA and inland WA) and low bias (underforecast, mostly
in CA and OR) in the median condition. In summary, all met-
rics show the same general trend as for major droughts: higher

skill in the north and lower in the south. We repeated the
same procedure for drought onset (Fig. 12) and found similar
patterns from north to south; however, the overall forecast
skill for onset is lower than for drought termination.

5. Conclusions

We examined the performance of SubX-driven forecasts of
droughts in the coastal western United States with leads from
1 to 4 weeks. We first evaluated SubX reforecasts of precipita-
tion and temperature. Our findings with respect to SubX pre-
cipitation and temperature skill are similar to previous studies
(e.g., Cao et al. 2021). After statistical downscaling and bias
correction of the forcings, we ran the Noah-MP LSM over the
domain for the period 1999–2016. We then evaluated skill of
SubX-based drought forecasts with a focus on drought termi-
nation and onset by using a variety of metrics. We evaluated
both major droughts and more modest events.

Based on our analysis, we found usable drought termina-
tion and onset forecast skill at week 1 and 2 leads for major
D0–D2 droughts; we found limited skill at week 3 for major
D0–D1 droughts and essentially no skill at week 4. Drought
prediction skill generally declines with increasing drought se-
verity. We found that the skill is generally higher on termina-
tion than for onset for both major and all drought events. We
also found that drought prediction skill generally increases
from south to north for both major and all drought events.

FIG. 12. As in Fig. 8, but for drought onset.
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S2S forecasting of meteorological and hydrologic variables
is an active research topic that is attracting significant atten-
tion from both the research community (Vitart et al. 2017;
Vitart and Robertson 2018; DeFlorio et al. 2019; Pan et al. 2019;
Zhu et al. 2018) and the applications and stakeholders’ commu-
nities (including the public health, agriculture, and emergency
management and response sectors, along with water resource
management; e.g., White et al. 2017, 2022; Robertson et al.
2020). We acknowledge, however, that S2S forecasting is still a
maturing area. The drought forecast skill (in onset and termina-
tion) that we find is highly dependent on precipitation forecast
skill. Precipitation forecast products with finer resolution and
higher skill likely will improve drought forecast skill. Future
studies could extend our work to more extreme events like
floods and explore the usefulness of including higher resolution
of forecast products. Exploiting of the large-scale climate drivers
might also benefit by identifying additional sources of skill [e.g.,
El Niño–Southern Oscillation (ENSO), the Madden–Julian
Oscillation (MJO), and North Atlantic Oscillation (NAO)]
(DeFlorio et al. 2019; White et al. 2022). Employing artificial in-
telligence and machine learning techniques (e.g., Chapman et al.
2019; Bouaziz et al. 2021; Qian et al. 2021) may have the poten-
tial to improve S2S prediction skill.
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